
 1 

A TWO-FLUID MODEL FORMULATION OF THE BOUNDARY LAYER 
FLOW OF A VISCOUS INCOMPRESSIBLE FLUID PAST A FLAT 

PLATE AT ZERO INCIDENCE. 
 

Paul John Mhozya 
Dar es Salaam, Tanzania 

E-mail: mhozya_pj@yahoo.com  
 
 

Abstract 
 
This boundary layer flow formulation is based on a two fluid model, the main flow 
parallel to the flat plate surface and a secondary flow transverse to it. And due to an 
apparent fault of the momentum operator, the energy conservation equation 

WEQ  has been employed to alternatively formulate the corresponding flow 
problem. Subsequent thereto a set of two kinds of governing equations is obtained, the 
first relating to shear stresses in a manner similar to the Hagen-Poiseuille treatment of 
the flow inside a circular pipe, and the second relating to normal stresses in the like 
manner of Bernoulli’s law. Additional governing conditions include kinetic energy 
conservation only. 
 
Even though the solution to the above formulation appears much too simple, it 
provides results that closely correspond to previously determined empirical and 
experimental ones. Velocity profiles are asymptotic in real space and the 
corresponding flow profile is the natural energy distribution curve expected of a self-
generating and self-maintaining system. Moreover, experimental laws such as the 
velocity-squared force law and the corresponding drag coefficient are obtained from 
the solution with exact results. Not only that but the solution also extends to other 
related fluid flow problems such as the flow inside a uniform circular pipe for which 
the corresponding parameters are in complete agreement with experimental results. 
 
Key words: Boundary layer flow, primary flow, secondary flow, viscous 
incompressible fluids, kinetic energy conservation, energy balance. 
 
1.1 A brief comparative analysis  
 
Secondary fluid flow formation is a common phenomenon associated with the drag 
effects of boundary layers on solid bodies immersed in fluid flows [2]. It is also 
known to occur when a fluid flows around a bend in which case it is assumed to be 
caused by the centrifugal force arising from circulation. Whatever the cause, a 
secondary flow is a stream of fluid that flows from a flat solid surface that is 
immersed parallel to a main fluid stream. Such a property gives the secondary flow its 
own identity complete with its own component of velocity transverse to the flat 
surface. The boundary layer flow is then understood to consist of the region of the 
subsequent interaction between the main stream and the secondary stream as shown in 
figure 1.1.1. But due to the presence of viscous drag effects, the interaction between 
the two flows is effectively that of the main stream dragging the secondary flow 
streamlines along.  This is essentially the basis of the two-fluid model description of 
the boundary layer flow where with secondary flow velocities u parallel to the solid 
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surface and v transverse to it, the boundary layer flow then acquires the profile shown 
in figure 1.1.2. 
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Figure 1.1.1: Ideal secondary flow formation 
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Figure 1.1.2: Secondary flow profile under viscous action 
 
The consequences of the two-fluid model profile in figure 1.1.2 above include the 
following basic observations:  
 
 No-slip taken together with kinetic energy conservation uu o v22  require that 

when u = 0 then v = uo, so that v does not vanish on the plate surface. 
 The maximum transverse velocity vmax is on the plate surface and decreases 

upwards as the secondary stream becomes absorbed into the main stream. 
 

 Due to viscous drag effects the velocity profiles for both the main flow and the 
secondary flow exhibit changes in velocity perpendicular to their respective flow 
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directions so that quantities like 
y
u
 
 

 .and 

 x
 v

  carry a particularly significant role 

in the subsequent formulae. 
 
These observations have two significantly negative repercussions; that is, whereas the 
first and second observations are at variance with the Cauchy boundary conditions, 
the third observation does not fit into the definition of momentum, the latter which 
must be in the direction of the corresponding change in velocity. So taken together the 
three observations constitute an obvious suggestion that the two-fluid model boundary 
layer flow problem may not easily respond to the Navier-Stokes (N-S) momentum 
formulation of the fluid flow problem. This possibility is further accentuated by the 
fact that the momentum operator ( 



V ) used to derive the N-S equations is inherently 
limited to the derivation and solution of rectilinear solid body motion.   
 
Consider a resultant force (F i) acting on a mass (m) that is moving with an 

instantaneous velocity (V (t)) so that Newton’s second law of motion gives 
 

                                    dt
VdmF i   

 
From it we obtain two different results, both of which exist in theory but one of which 
may not exist in practice. If we subject the RHS of the above force to partial 
differentiation in space and time we get the force 
 

(1.1.1)                         )  (   t
  

1 













 VVVmF  

Alternatively we can postpone the partial differentiation and first calculate the work 
done  







  VVdmrdiF     2

1  

 
And if thereafter we apply a partial differentiation similar to the previous one we have 

  )    ( 2
1      t

       2 VVmVVmVVF 

  

from which we get the expression for the corresponding force  

(1.1.2)                 )      (  2
1    t

     2 VVmVmF 
  

But vector algebra requires that for any two vectors A


and B

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where with VA


 and VB


 we have  
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From equation (1.1.3) it follows that   
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VVVV 













      2

1  

except when either 0


V  or   0     VV . That is, F1
 

 and F 2
 

  shall be equal if 

and only if either both do not exist or both are irrotational, otherwise FF 21
  

 . But the 
secondary flow streamline in figure 1.1.2 shows that a boundary layer flow is always 
rotational and   0     VV 1. And since F1

 

lacks the rotational term, it is therefore 
incapable of formulating the trajectory of the secondary fluid shown in figure 1.1.2.  
 
The difference between F1

 
 and F 2

 

 is further confirmed by their corresponding 
work-energy relations, that is, 
 
 

)V (   t
  

2
1 1 VVmVVmVF 

  

whereas 

)   (  2
1  t

    
2
1 2 VVVm

VV
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

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Further still, even though both of the quantities  )      ( VV  and    )   ( VV  have 
the dimensions of force, the former corresponds to a regular definition of a Newtonian 
force whereas the latter has no Newtonian physical equivalent. So F1

 

may actually not 

exist as a physical force and the only choice left open for us is to adopt the forceF 2
 

. 
 
1.2 The Governing equations 

 
Simple analysis shows that the force 

2F


(from equation (1.1.2)) cannot directly 

replace 
1F



(from equation (1.1.1)) in the formula for the Navier-Stokes equations. So 

as to abandon
1F



in favor of
2F



, we must completely restructure the momentum 

formula and the corresponding Navier-Stokes equations. But it has been shown above 
that 

1F


is actually contained in
2F

 2, so any governing formulation obtained using 

2F


must similarly contain some, if not all the ingredients of 1F


. Therefore, the best 

way to resolve the apparent conflict of the application of the two kinds of forces is to 
find a common ground in which both exist.  

Accordingly, we recall that except for the factor 
2
1  both 

1F


and 
2F



have the same 

work-energy relations, that is,  

                                                
1 The secondary flow streamline approaching the free stream asymptotically testifies to this fact.  

2 Previously 1F


has successfully been employed to solve a similar boundary layer problem. 
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)V (   t
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So basing our argument on this finding we can strongly assert that F1


 can be 

successfully replaced by 2F


if we re-formulate our fluid flow problem in terms of 

energy. And one way of achieving this is to invoke the first law of thermodynamics 
and subsequently use energy balance [2][3] as our boundary layer flow governing 
condition.  
 
The basic form of the energy conservation law states that the change in the total 
energy (E) is equal to the sum of the change in the heat energy (Q) and the work 

(W) done on3 the system. Using the symbol of change , one alternative way of 
expressing this law is 
 

(i) 1.2                    WQE   
 

(The negative sign accompanying the work signifies the output work done by the 
system as compared to an input work done on the system). 
 
An elementary mass (dm) of secondary fluid of density () having an elementary 
volume (dV) is given by dVdm   . And if a unit mass of the same fluid flowing 

with velocity  V  under a total head 






H  possesses internal energy (de), 

translational kinetic energy 
















 VVd2

1  and gravitational potential 





 Hg , the 

elementary mass (dm) then possesses the total energy (dE) given by 

1.2(ii)                          2
1 
















  HgVVddedVdE   

The viscous drag between the main flow and the secondary flow streamline in figure 
1.1.2 is the same as that between flat fluid planes in relative motion. Under such 

consideration, two planes moving with relative velocity (ui) in the xi-direction 

experience two stresses, ii in the xi-direction and ij in the xj-direction. Taken with 

the coefficient of dynamic viscosity (µ), each of the respective viscous stress 
components above shall be defined accordingly as 

1.2(iii)                   
x
u

j

i
ij 

  

                                                
3 Sometimes it is the work done by the system that is considered. 
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Symmetry holding that  ijji   where 
x
u

i

j
ji  

 



  implies that we can also 

alternatively represent 

      
 

 
 

2
1
























x
u

x
u

i

j

j

i
ij   

And since normal stress ii and thermodynamic pressure (p) are both in the xi-

direction, we can express the combined stress tensor (ij) in the form 
1.2(iv)                 

    1
   0           ,   










kj
kjp ijijijij  ,             

so that the total work (dw) done by the secondary flow stresses is then given by 
  1.2(v)                   dVddpdw ijij    

Combining the results in equations (1.2(ii)) and (1.2(v)) reduces the energy balance 
equation for the elementary mass (dm) to 

   dVijdijdpHgddeVddQ VV   
2
1   







   

But ordinary boundary layer fluid flows take place under conditions where some of 
the parameters in the last equation are not significant. We assume that the boundary 
layer flow is both isolated and operating at a constant temperature so that 0dQ  and 

0 ed . We assume further that the boundary layer forms near or on the surface of the 
main fluid body for which 0gdH . With these assumptions we end up with the 
equation 

    (1.2.1)    0  2
1   ijj ddpd iVV  

In component form we make the following expansions relative to the xj direction   
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
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By substituting the equivalent parameters from equation (1.2.2) into equation (1.2.1) 
at constant coefficient of dynamic viscosity (µ), we get the single4 governing force 
equation 

(1.2.3)               0   
 

2 
   

 
2
1 22








 ij

jj

i

j

i
x
p

x
u

x
u  

                                                
4 This is in fact two force equations in two perpendicular directions.  
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Equation (1.2.3) is necessarily a two-dimensional one in concurrence with the 
physical properties of the ordinary boundary layer flow where we always have only 
one direction for the main stream, and every other direction perpendicular to it 
reduces to the same 2-dimensional flow problem with the same general solution. 
 
Finally, the boundary layer flow problem may be further simplified by evaluating the 
Kronecker delta in equation (1.2.3) to give the two component equations  
 

ji
x
u

x
u

j

i
j
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



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On the other hand, the boundary layer flow is not only self-generating but it is also 
self-maintaining. That is, as soon as a flat plate is immersed in the main fluid stream, 
a secondary flow immediately comes up and continues to exist as long as the plate 
remains in place. Such behaviour is inherent of a system that conserves kinetic 
energy, so 

(1.2.6)                         2

o
2 u

i
iu   

 
must be an added condition so that  in the end we may conclude that the boundary 
layer flow problem is completely described by equations (1.2.4) and (1.2.5) and 
(1.2.6). That way an n-dimensional flow shall be represented by 2n +1 governing 
equations, that is, 2n force equations plus one kinetic energy conservation equation.  
  
2.1 Formulation of boundary conditions 
 
It is proposed above that the boundary layer flow of a viscous incompressible fluid of 
density  and dynamic viscosity µ is governed by the equation 

(1.2.3)       0  
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On evaluation of the Kronecker delta this gave rise to the two component equations 
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Both equations (1.2.4) and (1.2.5) are intergrable over all ranges, but due to kinetic 
energy conservation we make no presumptions as to the values of the parameters on 
the plate surface. We can only assume that no-slip leads to kinetic-energy-conserving 
velocity components us parallel to the plate surface and vs transverse to it, but exact 
values are not known. The other extremity of the boundary layer is also unknown 
because all parameters there behave asymptotically so that we cannot reach any of 
their limiting values, we get varying approximate values for practical use depending 
on the degree of accuracy required by the coresponding calculation.  
 
In this kind of situation it is not precisely correct to speak of boundary conditions 
because there are no boundaries with known values of fluid flow parameters involved.  
For this reason we shall use limits of integration instead and perform definite 
integration on the intervals 
 

   

   
(2.1.1)                                  

0,,0,                     
 and

0, ,,                     
 













uu ii

ioi uuu

 

These limits relate to the velocity component parallel to the flat plate which in the end 
becomes the free stream velocity uo and the velocity component transverse to the flat 
plate which eventually vanishes. Noting that there is no transverse flow within the 
free stream, the derivatives of both velocities must vanish at the free stream side of 
the flow.  
 
But even though the above intervals exist, their exact space coordinates are also not 
known. What we can say about their locations is that they are within the respective  
intervals  

 

 
                  (2.1.2)                     

,                                  
and

          ,                                  









 oj

j

x

x

 

where o is the boundary layer thickness taken at full plate length. But the boundary 
layer thickness is also known to grow asymptotically so that its exact size is also not 
measurable. Therefore on the intervals (2.1.2) it shall be necessary to use indefinite 
integration and thereafter select coordintes for which values of desired constants of 
integration exist. 
  
2.2 Solution to the boundary layer flow problem 
 
Using the limits of integration given in equation (2.1.1) each of equations (1. 2.4) and 
(1.2.5) shall have two kinds of solutions, one on the intervals 
    0,   , and uuu ioi  and the other on the intervals     0,     ,0, and uu ii   .  

Integrating equation (1.2.4) on the intervals [ui, uo] and [
x
u

j

i



 , 0] gives 
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2
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x
uuu
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i
io 


   

But the integration of the latter result involves the variable x j
which is on the interval 

[ x j
, ), which requires the use of an improper integral. This is not physically 

expedient so we perform the corresponding indefinite integration instead to get 
 

 ln1 











uu
uu

u
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io

io

o
j
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Then, if we assign some arbitrary value xj = xo as the physical point at which ui 
vanishes5 we get the axial velocity profile 
 

 

 
(2.2.1a)           

1

1






e
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xxu
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On the other hand integrating equation (2.1.4) on the intervals [ui, 0] and [
x
u

j

i




,0] 

gives 

     
2
1 2

x
uu

j

i
i 


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Since o is similarly not mathematically attainable as a limit, integration over the 

interval [xj, o) leads us to a purely hypothetical result, so rather than have o as 
our upper limit of integration, again we perform the corresponding indefinite 
integration to get 
 

 2
2 ux

i
j c 

  

 
 

Now, kinetic energy conservation requires that when the velocity component in 
(2.2.1a) vanishes; the component transverse to it must becomes uo, so we have 
 

    2
2 xu o

o

c 


 

 
and consequently we get the transverse velocity profile 
 

                                                
5 Not necessarily on the flat plate surface as is assumed in the no-slip condition 
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 
  

2
1 xxu
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Note here that rather than get values on the o side of the boundary layer as should 
have been expected, we got our limiting values on the ( xo ) side instead. 
 
And since every velocity component in equation (2.2.1a) is perpendicular to the 
corresponding transverse component given in the latter velocity distribution, we need 
to make this last equation perpendicular to equation (2.2.1a), and we do so by 
interchanging the subscripts in the latter to get  
 

 
(2.2.2a)               

2
1 xxu

uu
oi

o

o
j



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However, without loss of generality, the two velocity components can be plotted on 
the same axes to give the velocity profiles in figure 2.2.1 
 
 

            ui                                                                                                                                       
                                                                                                                                                    
                                                                                                                                                    
                                                                                                                                                    
                                                                                                                                                    
                                                                                                                                                    
                                                                                                                                                    
                                                                                                                                                    

             uo                                                                                                                                      
                                                                                                                                                    
                                                                                                                                                    

                                                                               Axial velocity distribution                                            
                                                                                                                                                    

                                                                Transverse velocity distribution                                                                                       
                                                                                                                                                    
                                                                                                                                                    

                                                                                                                                          xj              
 

 
Figure 2.2.1: Boundary layer velocity profiles 

 
 
The foregoing analysis provides the velocity profiles for a typical 2-dimensional 
boundary layer flow, and if we substitute the velocity components in equations 
(2.2.1a) and (2.2.2a) into the kinetic energy conservation equation (1.2.6)6 we get the 
corresponding two-dimensional flow profile  
 

                                                
6 The alternative is to use the stream function formulation  
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The same flow profile is obtained if the expressions in equations (2.2.1a) and (2.2.2a) 
are subjected to the stream function formulation based on continuity.  
 
The solution above easily translates into Cartesian (x,y)-coordinates where with 
xi=x and xj=y and ui=u, uj=v,  equation (2.2.1a) gives 
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whereas equation (2.2.2a) becomes  
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These latter two profiles under either stream function analysis or kinetic energy 
conservation give the flow profile  
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Equation (2.2.3b) is the standard natural energy distribution curve called the inverse 
hyperbolic cosine or the catenary   
 

u

yx

o

oo

a

a

y
Cosh

a
x

2

)(2.2.3c             1















 




 

 
in which when all the streamlines corresponding to every point (xo,yo) are plotted, 
we get the flow profile in figure 2.2.2 below.  
 

                                                
7 This solution was first proposed by the author [4] as the best-behaved assumed solution. 
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          y         
          Flat plate               Free stream axial flow 
 
 
 
 
                                                                        x 
 
 
 
 
 
             Secondary transverse flow streamlines. 

 
 

Figure 2.2.2: The boundary layer flow streamline pattern. 
 
Figure 2.2.2 is actually the graphical representation of the boundary layer flow with a 
very clear manifestation of the secondary flow interacting with the main stream. It is 
hereby further postulated that (xo,yo) is the point where the pumping pressure for the 
secondary flow is located.  
 
And as there is no restriction to the position of the point (xo,yo)  in relation to the flat 
plate surface, we get three kinds of flow profiles. There is the completely laminar 
flow where yo is negative as in figure 2.2.3(a).  
 

                   y                                                                                            
                                                                                           
                                  Boundary layer fluid trajectory                                 
                                                                                                                
                                                                                                               
                                                                                                                
                                                                                    
                                                                                                                
                                                                           Flat plate                     
                                                                                                                
                                                                                                          x     
      - y0                                                                                                 
                                                                                                     
                             
                                                                                                                
                                                               Axis of catenary 
                                         (xo,-yo)        
                                                            Lee side of catenary 
                                                                                                                
                                                                                                 
                                                                                                                
                                                                                                                
                                                                                                                 

 
 

Figure 2.2.3(a): Negative yo for a completely laminar flow 
 

But we can also have a flow that is transitional between a lamina flow and a turbulent 
one whereby yo= 0 as in figure 2.2.3(b).  
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                                                  ( xo , 0)                                                             
                                                                                                                
                                                                                                         x  
 
                                                                                                                
                                  Lee side of  catenary 
                                             
                                                                           Axis of Catenary 
                                                                                                                
                                                                                                                
                                                                                                                
                                                                                                                
                                                                                                                
                                                                                                                    

 
 Figure 2.2.3(b): yo=0 for a transitional flow 

 
Yet thirdly we can have a completely turbulent flow in which yo is positive as 
in figure 2.2.3(c). 

 
                          y                                                                                       
                                                                                                                
                                               Boundary layer fluid trajectory                                  
                                                                                                          
                                                                                                                
                                                     (xo, yo)                                                          
                                                                                                                
                                                           Axis of catenary  
                          
                                                                                       
   + yo                                                                                           x 
      
                                                                                                                
                                                                                                           
                                                                                                               
                                                                                                                
                                                      
                            Flat plate                                                         
                                                                                                                
                                                                                                                
                                                                                                                
                                               Lee side of catenary                                                         

 
 

Figure 2.2.3(c): Positive yo for a turbulent flow 
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Note that in the last case the boundary layer fluid does not make an contact with the 
flat plate surface. 

We can similarly integrate equation (1.2.5) on the intervals [ui, uo] and [
x
u

j

i




, 0] to 

get 

    (2.2.4)             01
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and on the intervals [uj, 0] and [
x
u

j

j




, 0] to get  
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Let us stop here with the notion that equations (2.2.4) and (2.2.5) are statements of 
Bernoulli’s theorem for viscous fluids flowing in the respective mutually orthogonal 
directions. If we add them and invoke kinetic energy conservation we get 
 

  (2.2.6)             1 PPx
u

o
i i

i 



 
  

 
which is a relationship between pressure and continuity, the existence of one being a 
necessary condition for the other.  
 
But we can also add equations (2.2.4) and (2.2.5) under continuity to get 
 

(2.2.7)      
2
1

2
1 22

0 
j

jo uuP P   

 
which is a statement of the Bernoulli theorem under the condition of constant 
gravitation. 
 
3.1 An analytical preview on previous results 
 
The solution presented above proposes boundary layer flow parameters with a wider 
physical perspective than previously known. The Reynolds number is now neither the 

constant 


luR o
e   representing similar flows nor the variable version 


xuR o

x   

used for the semi-infinite flat plate. Instead the number stands for every point (X,Y) 
inside a fluid of kinematic viscosity  flowing with a uniform velocity uo  such that   

(3.1.1)                    and    yYxX uu oo


  
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where (x.y) are the rectangular Cartesian coordinates of that point. This newly 
defined coordinate system applies to every function that represents any phenomenon 
within that fluid flow. 
 
Another boundary layer flow parameter affected in that similar manner is the 
similarity variable . This variable is conceived of the scaling argument that 

boundary layer growth with the downstream coordinate x is given by  
uo

xx 
  . 

Using this result one obtains the dimensionless variable  x
y


   expressed 

variously as x
y uo


   or Rxx

y
 . But this same result can be obtained 

from the flow profile 
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by taking the second order Taylor series approximation of the RHS whereby we get 
the result 

    (3.1.2)                                   
2 2
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
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By reducing both xo and yo to zero we get an expression for which =1. So the 
similarity variable is actually the quadratic approximation to the boundary layer flow 
profile.   
 
3.2 Viscous drag on the flat plate surface 
 
Apparently it is the position of the point (xo,yo) relative to the surface of the flat 
plate that determines  the size of the viscous drag force experienced by the flat plate. 
If we take an elementary volume of fluid in contact with the two sides of a flat plate 
of area A to be given by AdydV 2 , then equation (1.2.4) gives the elementary 
inertial force acting on the plate as8     

 2 
2
12 dyuy

AdF 










   

On integration with respect to u on the interval   , uou  this latter equation gives the 
force 

                                                
8 The same result is obtained for 

dy
u

AdF
y2

2

2


  integrated over         ,     and   0, 








 y

y
u  
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The total drag force exerted on the plate surface is obtained by taking y = 0 to give  
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Equation (3.2.2) is the well known proportionality to the square of the free stream 

velocity as expected, and from the definition [2]  
u

C
o

D
A
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drag coefficient  
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is a normal distribution represented by the curve in figure 3.2.1 below.  

                                 C D

                                                                        ( u o /  ) y 0

 
Figure 3.2.1: CD  from equation (3.2.3) 

 
Few previuos empirical or experimental formulae have ever been close to equation 
(3.2.3). Stokes drag coefficient[3] 

RC
e

D

24
  

 
is known to work only for Reynolds numbers Re<0 whereas Carl Wilhem Oseen’s [3] 
first approximation  







  RRC e

e
D 16

3124  

is valid only for Re<1. Oseen’s improved approximation  
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works no farther than Re=100 and no suitable approximate formulae has been 
suggested for the range of Reynolds numbers Re>1000. It has been stipulated [3] that 
over that range the drag coefficient for a flat plate no longer depends on the Reynolds 
number and values of CD had to be plotted against the ratio of plate-length/plate-
breadth instead to give the distribution in table 3.2.1. 
 
 

 
 

Table 3.2.1: Experimental values of CD for Re>1000 
 
On the other hand the accuracy of equation (3.2.3) extends further to its second order 
Taylor approximation   
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which with the Reynolds number redefined to include yuRe 0
0


 gives the 

equivalent alternative form 
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Equation (3.2.4(b)) gives the maximum value CD = 2 at Re=0 as predicted by the 
experimental results in table 3.2.1 above.   
 
Furthermore, equation (3.2.4(b)) is valid over the whole range  Re  and a 
plot of it in figure 3.2.2 compares to Duncan’s [2] similar plot in figure 3.2.3. The 
difference between the two plots is only dimensional where Duncan uses 



cuRLog o
e 10

 as the independent variable instead of the same form of the 

cordinate used in equation (3.2.4(a)). That is, instead of yo  Duncan uses c which he 
defines as the chord length of the flat plate. 



 18 

 
Figure 3.2.2: CD from equation (3.2.4(a)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2.3: Duncan’s Experimental CD Curves [2] 
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3.3 Application to the uniform circular pipe 
 
The point (xo,yo) similarly exists in the flow through a uniform circular pipe. The 
pipe then appears to consist of two cylinders, the inner real pipe of radius ro 
surrounded by an outer pseudo-pipe of radius Ro = ro + yo as shown in figure 3.3.1.  
 

 
                                                                                                                                                           
                                                                                      
                                                                                      
                                                                       
                                                                           
                                                                           
                                                                          
Pseudo pipe radius Ro  Real pipe radius ro                                                                

 
 

Figure 3.3.1: Pseudo pipe surrounding the real pipe  
 
Assume that at steady flow the viscous drag force acting inside the pipe is constant so 
that 

(3.3.1)                                 
02

2

Cr
d
d

u
  

A first indefinite integration of equation (3.3.1) with 0
dr
du  at r = 0 gives 

r
dr
du C 0  

A second integration with u = 0 at r = Ro and u = uo at r = 0 gives the velocity 
distribution  
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that corresponds to the quadratic velocity profile in figure 3.3.2 below. 
 

 
                                                                                                                              
                                                                                                                            
                                                                                                                              
                                                                                                                             
                                                                                                                             
                                                                                                                              
 
 

 
            Figure 3.3.2: The quadratic  velocity profile 
  

 



 20 

 
For the velocity distribution in equation (3.3.2), the discharge of the pipe is given by 
the integral of  

 d rπ r dQ u2  
from r=0 to r = ro to give  
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With the ideal discharge  

urQ oo
2

0
  

and a small values of yo compared to ro, we get the discharge coefficient 
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This latter discharge always lies between 0.6% and 0.65% as expected from 
experiment [3], so it is practically not possible to get rid of the parameter yo from the 

pipe. By assigning the proportionality ro= kyo we deduce from equation (3.3.4) that the 
maximum discharge cannot exceed 0.75%, a result that has been confirmed by 
experiment. 
 
From steady state and the input velocity being equal to the output velocity, a 
theoretical expectation arising from equation (3.3.3) suggests that the average flow 
velocity be given by 

  3.3.5) (                     2
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2

o rRR
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o
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However, the pressure at the points (xo,yo) is so high that it overrides the main flow 
at the pipe outlet to form venna contracta as shown in figure 3.3.3 
 
 

= 

Main flow Secondary flow 

Figure 3.3.3: The secondary flow model velocity profile 
 

Venna contracta 

 
so that in reality no quadratic velocity distribution actually exists. 
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Conclusion 
 
The success of the energy formulation and solution of the boundary layer flow 
problem lies in the fact that very few previous authorities have been left out of it. 
Some conservative fluid mechanical analysts could call the complete abandon of the 
Navier-Stokes (N-S) equations a failure of the formulation, but ask them if they ever 
have solved the equations without truncating terms from them. And once terms have 
been removed in order to simplify the equations, every serious analyst cannot still 
refer to them as the Navier-Stokes equations, that way even Blasius ended up solving 
the Prandtl boundary layer flow problem rather than the N-S problem. So frankly 
speaking no exact solution for the Navier-Stokes equations exists, so the necessity for 
their replacement was long overdue.  
 
But one may speak with certainty that the Hagen-Poisseuille formulation for the flow 
inside a uniform circular pipe has all along been a success. The theoretical solution of 
it is verifiable and has successfully been confirmed by experiment. And equation 
(1.2.4) is nothing but such a relationship only that this time it represents a boundary 
layer flow across a flat plate. Further still, equation (1.2.5) and Bernoulli’s law are 
just one and the same. So unlike the Navier-Stokes formulation, equations arising 
from the energy formulation are much similar to previous ones that worked. 
 
That boundary layer fluid mechanics has lacked a theoretical framework for the whole 
one hundred and fifty years of the existence of the N-S equations cannot be denied. 
No one ever solved the N-S equations without first invoking the Reynolds number Re, 
but then Re is a practical result established by Sir Osborne Reynolds. So the N-S 
equations have had to fall back onto some practical result for them to acquire a 
semblance to a valid fluid dynamical problem. In the energy formulation we have 
coordinates in the form of the same Reynolds numbers 

 , 







 yYxX uu oo

 but with their length parameter now properly and 

understandably defined. And the notion that the Reynolds number is part of every 
fluid flow coordinate is ample proof why Sir Osborne Reynolds found it in every 
measurement he took.  
 
The foregoing view concerning the Reynolds number also applies to the concept of 
similarity, that is, even though fluid flows may exist in completely different 

dimensions of space coordinates (x,y), they shall be mathematically the same flow 

if they have the same value for the flow parameters  , 







yx uu oo

 . There was an 

earlier confusion concerning similarity, the latter confusion which led to the dummy 

variable x
y uo


  being misnamed the similarity variable. But when plotted in the 

real plane the variable   corresponds to a whole quadratic distribution in x and y, so 
one actually wonders what a solution that is in terms of    actually represents in real 
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space. The energy formulation gets  as a second order Taylor series approximation 
of the flow profile given in equation (2.2.3(b)) so that   is in fact the quadratic 
approximation to the boundary layer flow profile. 
 
The solution to the energy formulation above works even better when it comes to its 
application to practical situations. Previously the velocity-squared force law was 
purely empirical and experimental, but now equation (3.2.2) represents the same law 
derived from first principles using equation (1.2.4). From equation (3.2.2) one also 
easily gets equation (3.2.3) which is an exact expression for the drag coefficient for 
the flat plate.. And unlike previous approximations which worked only on some 
limited range of Reynolds numbers, the second order Taylor approximation for 
equation (3.2.3) provides an expression that is valid for all Reynolds numbers. 
 
The energy formulation has also been successfully substituted for the Hagen-
Poiseuille formulation of the flow inside the uniform circular pipe and the results 
reflect on all the practically observed aspects of fluid transport in the pipes. 
Accordingly therefore, rather than have practical work verifying our theoretical 
findings; we have come up with a theoretical finding that has already been verified by 
experimental work in nearly all real life applications.  
 
Apparently the most obvious reason for the failure of the N-S formulation is the 
inappropriateness of the momentum operator 
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This operator has been derived from Newton’s second law that defines a force as  
 

                                    dt
VdmF i   

 
but this latter implies a total change in velocity with respect to time without any 
changes in space. So the action of converting this total derivative into a partial one 
with respect to both space and time is a purely mathematical one and has no physical 

connection. In fact, between 
1

F  and 
2

F  the corresponding expressions for the work 
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and  
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show every possibility that the former does not come out in accordance with the 
standard definition of work because it introduces foreign terms that do not fit into that 
definition.. 
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